product

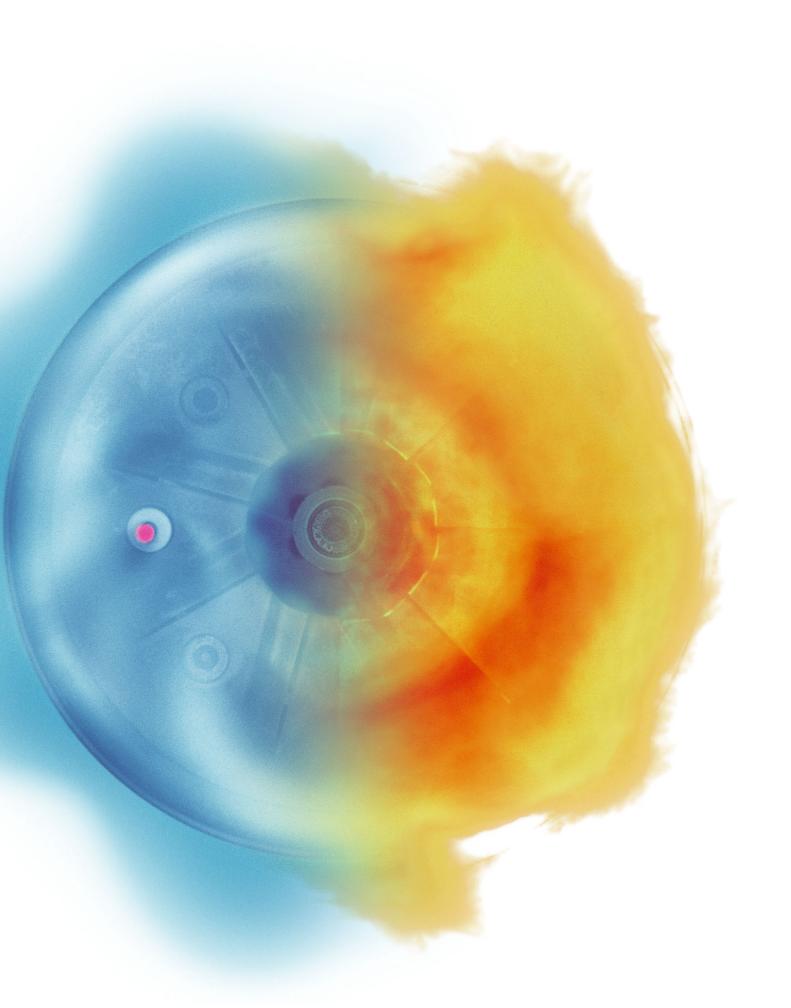
Information on compact burners

Hot for quality

Ultra-modern research and production methods, rigorous quality control, and a comprehensive service network ensures the reliability for which Weishaupt is renowned

Our motivation is technological progress, which has been driving us for more than 50 years to set new standards for the combustion industry.

Weishaupt's own Research and Development Centre is constantly working on both new developments and the optimisation of existing products.


It is our goal and our responsibility to go above and beyond current legislative requirements in developing combustion systems which produce fewer and fewer emissions, save more and more energy, and in so doing combine ecology and economy in a practical manner.

Therefore, not only do we invest in research and technology but we also only ever work on the best materials with modern tools and we carry out meticulous quality control check.

It has been proven over a million times in the field that heating specialists and customers hold Weishaupt burners to be reliable, long lasting, environmentally friendly and technologically advanced. A fact also documented by numerous design and innovation prizes.

Over 600 burners are manufactured daily at our ultra-modern production facilities in Schwendi. Every single burner is subjected to a mechanical and electrical function test. The combination of technology with an effective quality control system safeguards Weishaupt's renowned reputation for quality.

A new burner is always an investment in the future. Cost needs to be well balanced against use, but the final deciding factors for long term success are quality, technology and safety. Deciding for Weishaupt burners is therefore a safe investment in the future.

A hallmark of practical combustion technology

Coded plugs for safe electrical connection

All components are easily accessible

Simple commissioning and diagnosis

A safe investment in the future

Reliable and economical: The millionfold success of the Weishaupt compact burners is the result of orienting without compromise towards quality and the customer. The technology has been constantly developed and improved over decades.

The latest production methods and stringent quality checks of all products ensure Weishaupt's reputation for quality. You are making a safe investment in the future.

The WGL integrates seamlessly with the other burners in the W series family to unite all the advantages of the W series with increased fuel flexibility.

Large capacity range

The large capacity range of 70 to 340 kW and 125 to 550 kW makes the burners suitable for the widest range of heat exchangers.

Electronic ignition

The W-ZG 01 ignition unit used on all Weishaupt W burners is particularly energy efficient and extremely reliable.

Valve proving as standard with the W-FM24 combustion manager

The low gas pressure switch is used to check the tightness of the gas valves, thus providing valve proving without the need for any additional components or costs.

Gas multifunction assembly

The Weishaupt gas multifunction assembly incorporates the following components/functions:

- Servo-controlled gas pressure governor for continual gas pressure
- 2 solenoid valves (Class A)
- Filter
- Gas pressure switch
 If the gas pressure falls too low, a low
 gas pressure program is started. The
 gas pressure switch also provides for
 automatic valve proving.

Outstanding service

Weishaupt has an extensive sales and service network worldwide. Customer service is available around the clock. Optimal in-house training at Weishaupt ensures our service engineers are of the highest calibre.

Proven quality

All burners are tested by an independent body and conform to the following standards and EU directives:

- EN 267
- Gas Appliance Directive 90/396/EEC
- EN 676
- Machinery Directive 98/37/EC
- Electromagnetic Compatability Directive 89/336/EEC
- Low Voltage Directive 73/23/EEC
- Boiler Efficiency Directive 92/42/EEC
- Pressure Equipment Directive 97/23/EC

The common platform for all W series burners simplifies the provision and storage of spare parts

Trustworthy technology

Even the visual impression after removing the burner cover is convincing. All components are clearly arranged, the electrical connections are obvious and noninterchangeable.

The technology makes a good impression because it is typical Weishaupt.

Compact construction

The WGL burner's compact construction means it can be easily installed by one person. Commissioning costs have been reduced to a minimum.

Sound attenuated air inlet

The transverse fan is sound attenuated on the suction side. These burners therefore operate particularly quietly.

Electronically controlled air damper

The electronically controlled air damper closes at burner shutdown to hinder the cooling-down of the combustion chamber.

Servicing positions

A special bracket enables the burner and pump assembly to be put into a servicing position, which allows easy access to the burner and mixing assembly.

Common platform

The common platform principle used with W burners simplifies the provision and storage of spare parts.

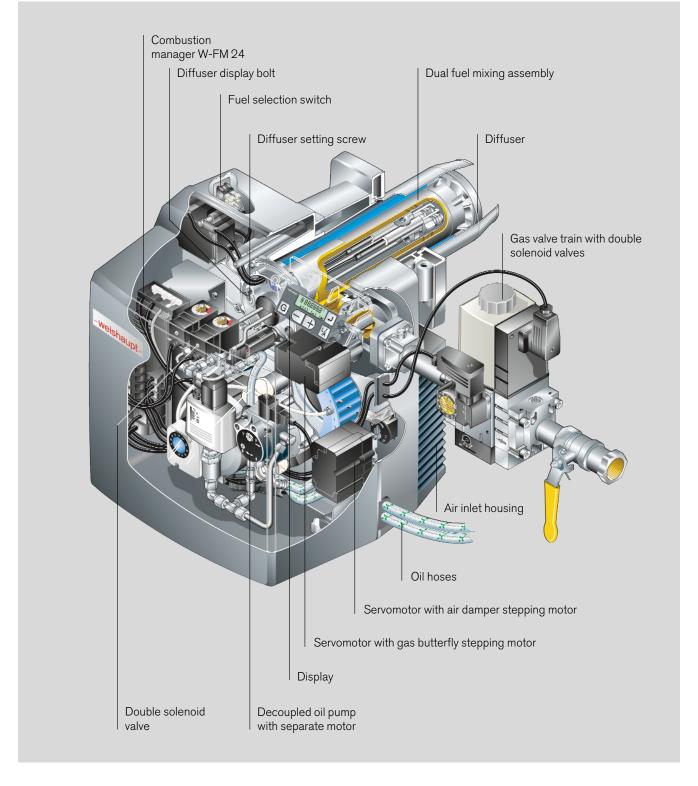
Diagnosis via laptop

A special software package and connection cables are available for interrogating the combustion manager. Combustion optimisation and fault analysis can thus be carried out easily via a laptop computer.

Decoupled oil pump

The oil pump is driven by a separate motor and is decoupled during gas operation, thus protecting the pump and saving electrical energy.

Adjustable diffuser


The position of the diffuser can be easily adjusted from behind with the burner in its installed position by using the setting screw with display bolt.

Fuel changeover

Gas or oil operation is selected via a rocker switch and fuel changeover can even be effected during burner operation. There is also the possibility of remote fuel changeover by a BMS.

Lower gas connection pressures

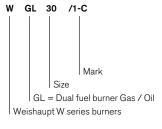
The newly developed mixing assembly enables operation with a lower gas connection pressure. That in turn allows a smaller gas valve train to be used which has a positive effect on the price/capacity ratio.

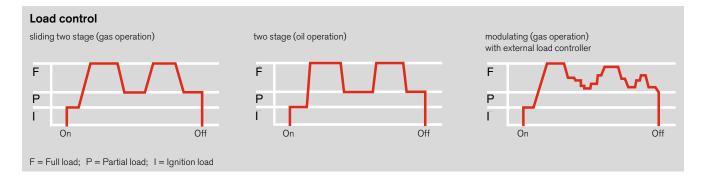
Digital combustion management: safe and easy to use

Secure and simple digital combustion management

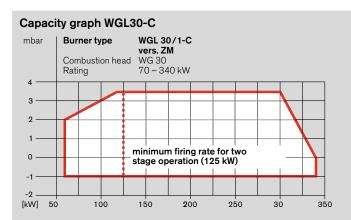
Weishaupt is a pioneer of digital combustion management. It offers easier operation and maintenance, even greater operational reliability and last but not least, an attractive price/capacity ratio. Furthermore the intelligent technology allows for easy integration with building management systems.

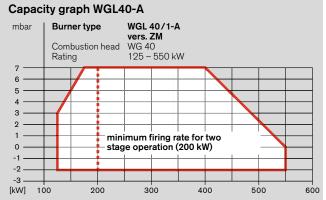
All Weishaupt W series burners are fitted with digital combustion managers as standard, whose microprocessors control and monitor all burner functions. The result: Weishaupt WGL burners are easy to use, precise and safe.


The digital combustion manager also offers the possibility of communicating with other systems via an integrated eBUS port. This enables the heating engineer to monitor the operation of the burner and remotely diagnose any errors.


The key points:

- Simplified, display led commissioning
- Non-interchangeable plug connections ensure the correct electrical connection of all components
- Electrical remote reset is possible
- Safety ensured with the use of two microprocessors with reciprocal monitoring
- LCD display with interrogation, servicing and parameter functions.
 The burner can be set directly via the operating keys


System overview, W-FM 24 combustion manager	digital
Functions	W-FM 24
Dual fuel operation	•
Combustion manager for	
intermittent operation	•
Flame sensor for	
intermittent operation	FLW
Servomotors in	
electronic compound regulation	2 off
Servomotors with stepping motors	•
Gas valve proving	•
eBUS interface	•
Service Software	MV 2000


Clarification of designation

Burner capacity Valve train selection

Capacity graphs in accordance with EN 676. The ratings are based on an installation altitude of 0 m. An altitude-based reduction in capacity of approx. 1 % per 100 m above sea level should be taken into consideration.

WGL30-C gas valve train selection

Burner rating		Low pressure supply (Supply pressure in mbar into				
	isolating	yalve) p _{e, max} =	= 300 mbar			
[kW]	3/4″	1″	11/2"			
Natural C	as E, H _i = 1	0.35 kWh/mn	³ , d = 0.606,			
$W_i = 13.2$	95 kWh/mn	3				
125	16	15	14			
145	16	15	14			
165	17	15	14			
185	18	15	14			
200	18	15	15			
220	19	16	15			
240	21	16	15			
260	22	17	15			
280	24	18	15			
300	26	19	16			
320	28	20	17			
340	30	21	18			

rating		(Supply pressure in mbar into				
	isolating	valve) p _{e, max} =	300 mbar			
[kW]	3/4"	1″	11/2″			
Natural (Gas LL, H _i = 8	3.83 kWh/mn³,	d = 0.641,			
$W_i = 11.0$	29 kWh/mn	3				
125	18	17	16			
145	19	17	16			
165	20	18	17			
185	21	18	17			
200	22	19	17			
220	24	19	17			
240	26	20	17			
260	28	21	17			
280	31	22	18			
300	33	24	18			
320	36	25	20			
340	40	27	21			

Low pressure supply

	rating	(Supply pressure in moar into isolating valve) $p_{e, max} = 300 \text{ mbar}$					
	[kW]	3/4"	1"	11/2"			
	LPG B/P, H _i =	25.89 kWh/mr	³ , d = 1.555,				
1	$W_i = 20.762 k$	(Wh/mn³					
	125	11	11	-			
	145	12	11	-			
	165	12	12	-			
	185	13	12	-			
	200	13	12	-			
	220	14	13	-			
	240	15	13	-			
	260	16	13	-			
	280	16	14	-			
	300	17	14	-			
	320	18	15	-			
	340	19	15	_			

Low pressure supply

WGL40-A gas valve train selection Low pressure supply

Burner

rating	(Supply pressure in mbar into						
	isola	iting v	alve) p	e, max =	= 300	mbar	
[kW]	3/4	1″	1 1/2	2″	65	80	
Natural Gas	E, H _i	= 10.3	35 kW	h/mn	³, d =	0.606,	
$W_i = 13.295$	kWh/	mn³					
200	18	14	13	11	11	11	
225	20	15	14	12	11	11	
250	22	16	15	12	12	12	
275	25	18	16	13	13	13	
300	28	19	18	14	14	14	
325	32	22	20	16	15	15	
375	41	27	24	20	19	19	
400	45	29	25	21	20	20	
425	48	30	26	21	20	20	
450	52	31	26	22	21	20	
500	60	34	28	23	21	21	
550	69	38	31	24	23	22	

[kW]	3/4" 1" 1 1/2" 2" 65 80
	isolating valve) p _{e, max} = 300 mbar
rating	(Supply pressure in mbar into
Burner	Low pressure supply

Natural Ga	s LL, H	; = 8.8	33 kW	h/mn	³ , d =	0.641	,
$W_i = 11.02$	9 kWh/	mn³					
200	23	17	16	14	14	14	
225	26	18	17	15	15	14	
250	29	20	18	16	15	15	
275	33	22	19	17	16	16	
300	37	24	21	18	17	17	
325	42	26	23	20	19	19	
375	53	33	29	24	23	22	
400	58	35	30	25	24	23	
425	63	37	32	26	24	23	
450	69	39	33	26	25	24	
500	81	44	37	28	26	25	
550	94	50	41	31	29	27	

Burner rating	Low pressure supply (Supply pressure in mbar into
[kW]	isolating valve) p _{e, max} = 300 mbar 3/4" 1" 1 ½" 2" 65 80

LPG B/P, $H_i = 25.89 \text{ kWh/mn}^3$, $d = 1.555$,								
$W_i = 20.762 \text{ kWh/mn}^3$								
200	10	9	-	-	-	-		
225	12	10	-	-	-	-		
250	13	11	-	-	-	-		
275	15	12	-	-	-	-		
300	17	14	-	-	-	-		
325	20	15	-	-	-	-		
375	25	19	-	-	-	-		
400	27	21	-	-	-	-		
425	29	21	-	-	-	-		
450	30	22	-	-	-	-		
500	34	24	-	-	-	-		
550	38	26	-	-	-	-		

The flue gas resistance must be added to the minimum supply pressure calculated. The minimum supply pressure should be no less than 15 mbar.

Order Numbers, Special Equipment Technical Data

Burner					
Burner type	Version	Operation		Valve train selection	Order No.
		Fuel oil EL	Natural Gas E, LL	DN	
WGL30/1-C	ZM	two stage	sliding two stage or modulating	3/4"	235 316 21
		two stage	sliding two stage or modulating	1"	235 316 31
		two stage	sliding two stage or modulating	1 1/2"	235 316 41
WGL40/1-A	ZM	two stage	sliding two stage or modulating	3/4"	235 416 21
		two stage	sliding two stage or modulating	1"	235 416 31
		two stage	sliding two stage or modulating	1 1/2"	235 416 41
		two stage	sliding two stage or modulating	2"	235 416 61
		two stage	sliding two stage or modulating	DN65	235 426 31
		two stage	sliding two stage or modulating	DN80	235 426 41

Special equipment

Description		Order No.	
		WGL30-C	WGL40-A
Combustion head extension	by 100 mm	230 010 36	230 010 80
	by 200 mm	230 010 37	230 010 81
	by 300 mm	230 010 38	-
Solenoid valve	for air pressure switch test	230 010 46	230 010 46
	for continuous running fan and post-purge		
Air inlet	for extraneous air without additional air pressure switch	230 010 31	230 005 68
	for extraneous air with additional air pressure switch	230 010 32	230 008 36
Burner rotated through 180°		230 010 28	230 010 28
Oil meter and hours counter		230 010 45	-
Gas pressure switch	max. UB 50 loose	230 006 01	230 006 01

Technical Data

Burner type	Combustion	Motor	Motor	Servomotor	Air pressure	Weight ^①	Valve tra	Valve train		Flame
	manager	Fan	Oil pump		switch	Burner	Size	Туре	Weight ^①	monitoring
WGL30/1-C	W-FM 24	ECK 05/A-2	ECK 02/F-2P	STE 4.5 *	LGW 10A2	27 kg	3/4″	W-MF SE 507	6 kg	Flicker
		230 V; 50 Hz	230 V; 50 Hz	B0.36/6-01L			1″	W-MF SE 512	9 kg	detector
		Cond. 12 µF	Cond. 3 µF				1 1/2"	W-MF SE 512	11.5 kg	
		2.3 A; 0.38 kW	0.63 A; 0.075 kV	V						
		2890 rpm	2810 rpm							
WGL40/1-A	W-FM 24	ECK 06/A-2	ECK 02/F-2P	STE 4.5 *	LGW 10A2	47 kg	3/4″	W-MF SE 507	6 kg	Flicker
		230 V; 50 Hz	230 V; 50 Hz	BO.36/6-01L			1″	W-MF SE 512	9 kg	detector
		Cond. 16 µF	Cond. 3 µF				1 1/2"	W-MF SE 512	11.5 kg	
		3.2 A; 0.53 kW	0.63 A; 0.075 kV	V			2"	DMV 525	17.5 kg	
		2900 rpm	2810 rpm				DN65	DMV 5065	see tech. wo	rksheet
							DN80	DMV 5080	see tech. wo	rksheet

Weights are approximate.

Dimensions

Burner dimensions Burner Dimensions in mm Rр WGL30-C 169 480 62 197 420 226 196 460 342 226 127 M8 170 – 186 130 1 1/2" 45° WGL40-A 235 577 72 235 450 245 207 480 360 245 154 M10 186 - 200 160 1 1/2" 45° Ro -weishauptd1h1 b1 12 **►** 13 **◄** dз b₂ рз

Max Weishaupt GmbH D-88475 Schwendi Tel. + 49 73 53 8 30, Fax + 49 73 53 8 33 58 www.weishaupt.de

Print No. 83**2096**02, May 2011 Printed in Germany. All rights reserved.

Weishaupt (UK) Limited Neachells Lane, Willenhall, WV13 3RG Tel (01902) 609841, Fax (01902) 633343 www.weishaupt.co.uk

We're right where you need us

A strong service network gives peace of mind

Weishaupt equipment is available from good heating companies, with whom Weishaupt works in partnership. To support the specialists, Weishaupt maintains a large sales and service network. Delivery, spares and service are thus continually ensured.

Even in an emergency, Weishaupt is on call. The service department is available to Weishaupt customers around the clock, 365 days a year. A Weishaupt branch office or agency near you can answer all your questions on heating and Weishaupt burners.

